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Classical Brill–Noether theory

Brill–Noether theory studies linear series on (smooth) algebraic curves. Let C be a smooth

curve.

By a gr
d, we mean a linear series of dimension r and degree d.

(Base point free gr
d gives a (non-degenerate) map C → Pr of degree d.)

Question (Brill–Noether Theory)
What gr

d’s does C have?
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Brill–Noether loci

Brill–Noether Theorem [Eisenbud, Fulton, Gieseker, Griffiths, Harris, Kempf, Kleiman,
Lazarsfeld]
A general curve C ∈ Mg admits a gr

d if and only if

ρ(g, r, d) := g − (r + 1)(g − d + r) ≥ 0.

Thus when ρ(g, r, d) < 0, the Brill–Noether locus

Mr
g,d := {C ∈ Mg admitting a gr

d} is a subvariety of Mg.

Question (Refined Brill–Noether theory)
For a “general” curve in Mr

g,d, what gs
e’s does it have?
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Refined Brill–Noether theory

Question (Refined Brill–Noether theory)
For a “general” curve in Mr

g,d, what gs
e’s does it have?

When r = 1, M1
g,d is irreducible.

▶ Refined Brill–Noether theory for curves of fixed gonality (answers question for r = 1)
[Pflueger, Jensen–Ranganathan, H. Larson, Larson–Larson–Vogt]

For r ≥ 2, Mr
g,d can have multiple components of various dimensions!

Curves in different components can behave very differently! (M3
10,9)

Relative positions of Brill–Noether loci give a coarse answer.

We have trivial containments:
Mr

g,d ⊂ Mr
g,d+1 by adding a basepoint

Mr
g,d ⊂ Mr−1

g,d−1 by subtracting a non-basepoint
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Brill–Noether loci in genus 10 (omitting trivial containments ↑ & ↖)
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Relative positions of Brill–Noether loci

Theorem (H. 2025)
The relative positions of Brill–Noether loci in genus g ≤ 6 are given by trivial containments.

For 7 ≤ g ≤ 12, the relative positions are identified.

Genus 13
The relative position of M4

13,12???
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Predicting relative positions of Brill–Noether loci with K3s

Let g ≥ 3, r ≥ 1, and 2 ≤ d ≤ g − 1, 4(g − 1)(r − 1) − d2 < 0.

Let (S, H) be a polarized K3 surface with Pic(S) = Λr
g,d,

where Λr
g,d is the lattice Z[H] ⊕ Z[L] with intersection matrix[

H2 H.L
H.L L2

]
=

[
2g − 2 d

d 2r − 2

]
.

For C ∈ |H| smooth irred., C ∈ Mr
g,d (|OC(L)| is a base point free gr

d).

Philosophy
Such K3s detect the behavior of the “most general” curves ∈ Mr

g,d.
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Destabilizing filtrations

C admits a gs
e exactly when S admits the Lazarsfeld–Mukai bundle EC,gs

e
.

0 → EC,A
∨ → V ⊗ OS

ev→ A → 0, where gs
e = (A, V )

When ρ(g, s, e) < 0, EC,gs
e

is unstable, so has some destabilizing filtration

0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = EC,gs
e

may assume Ei+1/Ei stable. There are many constraints, e.g. the slopes µi,j = µH(Ei/Ei−j)
also fit into a Gelfand–Tsetlin pattern (µi,j ≥ µi+1,j+1 ≥ µi+1,j).

c2(En) obtained recursively from c1 and c2 of the factors.

Since Pic(S) = Λr
g,d is fixed, an assignment of c1’s to the Ei gives a lower bound on

e = c2(EC,gs
e
) (if all bounds > e then EC,gs

e
does not exist!)
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Example M2
100,d

?⊂ M3
100,e

Does a K3 surface S with Pic(S) = Λ2
100,d admit a bundle E = EC,g3

e
?

For d ≥ 52, checking assignments of c1’s, no such bundle exists!

d = 51
There is a destabilizing filtration E1 ⊂ E with rk E1 = 2, c1(E1) = H − L and c2(E1) = 26.
In fact, EH−L,g1

26
⊕ EL,g1

2
is a Lazarsfeld–Mukai bundle of type g3

77 (M3
100,77 is maximal).

So we predict a containment M2
100,51

?
⊂ M3

100,77.

d < 50
Many destabilizing filtrations appear as d decreases
38 ≤ d ≤ 50: ranks 2 ⊂ E, c1(E1) = H − L;
d = 37: ranks 1 ⊂ E, c1(E1) = H − 2L;
21 ≤ d ≤ 36: ranks 1 ⊂ 2 ⊂ E, c1(E1) = H − 2L, c1(E2) = H − L;
d = 20: Over 2000 filtrations! d < 20: No such K3s.
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K3-expected non-containments

For large g and d, the smallest bounds c2(En) appear to come from destabilizing filtrations of
the form E1 ⊂ En with En/E1 stable and rk(E1) = 2, c1(E1) = H − L.

Conjecture
For g and d sufficiently large, d, e ≤ g − 1, and 2 ≤ r < s,

if e < d − 2r + s + g − d + r + 1
2 + (s − 2)(r − 1) − 1

s − 1 , then Mr
g,d ⊈ Ms

g,e.

Can be checked numerically, given particular values of g, r, d, s, e, but showing that no other
filtrations exist is difficult (also difficult to show that this filtrations gives tightest bound).
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K3-expected containments
Conversely, when d is slightly smaller, a destabilizing filtration may exist for EC,gs

e
.

Conjecture
For g and d sufficiently large, with d, e ≤ g − 1, and 2 ≤ r < s,

if e ≥ d − 2r + s + g − d + r + 1
2 + (s − 2)(r − 1) − 1

s − 1 , then Mr
g,d ⊂ Ms

g,e.

Definition

The potential containment Mr
g,d

?
⊂ Ms

g,e is called K3-expected if such a K3 surface S with
Pic(S) = Λr

g,d admits a vector bundle EC,gs
e
.

Philosophy
(In some range) K3-expected containments hold.
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Other sources of (non)-containments

Containments
Curves on Hirzebruch surfaces [Larson–Vemulapalli]
Highly secant hyperplanes to curves in Pr

Castelnuovo curves
Low Clifford index and Castelnuovo–Severi inequality

Non-containments
Covers of curves (bi-elliptic curves play a large role in distinguishing loci with d − 2r = 1
and d − 2r = 2)
Chains of elliptic curves and admissible fillings of tableaux [Pflueger, Teixidor i Bigas]
Castelnuovo curves
Gonality of nodal plane curves
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Brill–Noether loci in genus 12 (omitting trivial containments ↑ & ↖)
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Geology of Brill–Noether loci

d − 2r

r

d = g − 1

Few
Containments

??Chaos??

Layers of Equality

ρ < 0

(Serre Duality)
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Thank You!

Questions?

R. Haburcak (OSU) Refined Brill–Noether Theory JMM 2026 (DC)


