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Classical Brill-Noether theory

Brill-Noether theory studies linear series on (smooth) algebraic curves. Let C' be a smooth
curve.

By a g);, we mean a linear series of dimension r and degree d.

(Base point free g/ gives a (non-degenerate) map C' — P" of degree d.)

Question (Brill-Noether Theory)
What g;'s does C' have? }
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Brill-Noether loci

Brill-Noether Theorem [Eisenbud, Fulton, Gieseker, Griffiths, Harris, Kempf, Kleiman,
Lazarsfeld]
A general curve C' € M, admits a g if and only if

p(g,r,d) =g —(r+1)(g—d+r)=0.

Thus when p(g,r,d) < 0, the Brill-Noether locus

Mg 4= {C € M, admitting a gy} is a subvariety of M.
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Brill-Noether loci

Brill-Noether Theorem [Eisenbud, Fulton, Gieseker, Griffiths, Harris, Kempf, Kleiman,
Lazarsfeld]

A general curve C' € M, admits a g if and only if

p(g,r,d) =g —(r+1)(g—d+r)=0.

Thus when p(g,r,d) < 0, the Brill-Noether locus

9.d = 1C € My admitting a gy} is a subvariety of M,.

Question (Refined Brill-Noether theory)
For a “general” curve in My ;, what g¢'s does it have? J
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Refined Brill-Noether theory

Question (Refined Brill-Noether theory)

For a “general” curve in My ;, what g¢'s does it have? J

e Whenr =1, M}Ld is irreducible.

» Refined Brill-Noether theory for curves of fixed gonality (answers question for r = 1)
[Pflueger, Jensen—Ranganathan, H. Larson, Larson—Larson—Vogt]

e Forr > 2, M;d can have multiple components of various dimensions!

o Curves in different components can behave very differently! (M%;4)

Relative positions of Brill-Noether loci give a coarse answer.
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Refined Brill-Noether theory

Question (Refined Brill-Noether theory)

For a “general” curve in My ;, what g¢'s does it have? J

e Whenr =1, M}Ld is irreducible.

» Refined Brill-Noether theory for curves of fixed gonality (answers question for r = 1)
[Pflueger, Jensen—Ranganathan, H. Larson, Larson—Larson—Vogt]

e Forr > 2, M;d can have multiple components of various dimensions!

o Curves in different components can behave very differently! (M%;4)

Relative positions of Brill-Noether loci give a coarse answer.

We have trivial containments:
o M ; C My 4y by adding a basepoint
° ./\/lg a C /\/lgd 1 by subtracting a non-basepoint
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Brill-Noether loci in genus 10 (omitting trivial containments 1 & \)
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Relative positions of Brill-Noether loci

Theorem (H. 2025)

The relative positions of Brill-Noether loci in genus g < 6 are given by trivial containments.

For 7 < g < 12, the relative positions are identified.

Genus 13
The relative position of M{; 1,777 J
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Predicting relative positions of Brill-Noether loci with K3s

letg>3,r>1,and2<d<g—-1,4g—-1)(r—-1)-d%<0.

Let (S, H) be a polarized K3 surface with Pic(S) = A} ,,
where A7 ; is the lattice Z[H| & Z[L] with intersection matrix

H? HL| |29-2 d
HL L*| | d 2r—2[
For C € [H| smooth irred., C € M7 ; (|Oc(L)] is a base point free g;).

Philosophy

Such K3s detect the behavior of the “most general” curves € M ;.
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Destabilizing filtrations

C admits a g; exactly when S admits the Lazarsfeld-Mukai bundle E¢ gs.

0= FEca’ > V®0s3 A0, where g¥ = (A4,V)
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Destabilizing filtrations

C admits a g; exactly when S admits the Lazarsfeld-Mukai bundle E¢ gs.

0= FEca’ > V®0s3 A0, where g¥ = (A4,V)
When p(g,s,e) <0, Ec,gs is unstable, so has some destabilizing filtration
OCEiC---CFEy 4 CEn:EC,gg

may assume F; 1 /E; stable.
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Destabilizing filtrations

C admits a g; exactly when S admits the Lazarsfeld-Mukai bundle E¢ gs.

0= FEca’ > V®0s3 A0, where g¥ = (A4,V)

When p(g,s,e) <0, Ec,gs is unstable, so has some destabilizing filtration
OCEiC---CEp_1 CEn:EC,gg

may assume Ej;,/FE; stable. There are many constraints, e.g. the slopes p; ; = pup(E;/E;—j)
also fit into a Gelfand—Tsetlin pattern (p;; > pit1,j+1 > Hit1,5)-
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Destabilizing filtrations

C admits a g; exactly when S admits the Lazarsfeld-Mukai bundle E¢ gs.

0= FEca’ > V®0s3 A0, where g¥ = (A4,V)

When p(g,s,e) <0, Ec,gs is unstable, so has some destabilizing filtration
OCEiC---CEp_1 CEn:EC,gg

may assume Ej;,/FE; stable. There are many constraints, e.g. the slopes p; ; = pup(E;/E;—j)
also fit into a Gelfand—Tsetlin pattern (p;; > pit1,j+1 > Hit1,5)-

c2(Ey,) obtained recursively from ¢; and cg of the factors.
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Destabilizing filtrations

C admits a g; exactly when S admits the Lazarsfeld-Mukai bundle E¢ gs.

0= FEca’ > V®0s3 A0, where g¥ = (A4,V)

When p(g,s,e) <0, Ec,gs is unstable, so has some destabilizing filtration
OCEiC---CEp_1 CEn:EC,gg

may assume Ej;,/FE; stable. There are many constraints, e.g. the slopes p; ; = pup(E;/E;—j)
also fit into a Gelfand—Tsetlin pattern (p;; > pit1,j+1 > Hit1,5)-

c2(Ey,) obtained recursively from ¢; and cg of the factors.

Since Pic(S) = Ay , is fixed, an assignment of ¢1's to the E; gives a lower bound on
e = c2(Ec,gs) (if all bounds > e then E¢ 45 does not exist!)
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?
2 - 3
Examp|e 100.d C MlOO,E’.

Does a K3 surface S with Pic(S) = Ajy, ; admit a bundle E = E¢ 57
For d > 52, checking assignments of c;'s, no such bundle exists!
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?
2 : 3
Example M7y, ; C Mig.

Does a K3 surface S with Pic(S) = Ajy, ; admit a bundle E = E¢ 57
For d > 52, checking assignments of c;'s, no such bundle exists!

d=>51

There is a destabilizing filtration Ey C E with rk B} =2, ¢1(F1) = H — L and c2(E;) = 26.
In fact, Ey_j, 1 @® Ep g1 is a Lazarsfeld-Mukai bundle of type 937 (Mo 77 is maximal).

?
So we predict a containment My 5; C M3ng 77-
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?
2 LoA43
Example My, ; C My

Does a K3 surface S with Pic(S) = Ajy, ; admit a bundle E = E¢ 57

For d > 52, checking assignments of c;'s, no such bundle exists!

d =51

There is a destabilizing filtration Ey C E with rk B} =2, ¢1(F1) = H — L and c2(E;) = 26.
In fact, Ey_j, 1 @® Ep g1 is a Lazarsfeld-Mukai bundle of type 937 (Mo 77 is maximal).

?
So we predict a containment My 5; C M3ng 77-

d < 50

Many destabilizing filtrations appear as d decreases

38 <d<50: ranks2C E, ¢;(Ey) =H — L;

d=3T:ranks 1 C E, c1(E1) = H — 2L;

21 <d<36: ranks 1 C2CFE, c1(E1) = H —2L, c;(E2) = H — L;
d = 20: Over 2000 filtrations! d < 20: No such K3s.
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K3-expected non-containments

For large g and d, the smallest bounds c3(E,,) appear to come from destabilizing filtrations of
the form Ey C E,, with E,,/F; stable and rk(E7) = 2,¢1(F1) = H — L.

Conjecture

For g and d sufficiently large, d,e < g —1, and 2 < r < s,

g—d+r—|—1+(s—2)(r—1)—1

ife<d—2
ife r4+ s+ 5 1

5 then M;’d /(Z M;,e'

Can be checked numerically, given particular values of g, 7, d, s, e, but showing that no other
filtrations exist is difficult (also difficult to show that this filtrations gives tightest bound).
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K3-expected containments

Conversely, when d is slightly smaller, a destabilizing filtration may exist for E¢ gs.
Conjecture
For g and d sufficiently large, with d,e < g—1, and 2 <r < s,

, —d+r+1 —2)(r—1)—1
ife>d—2r+s+2 2T G >S(r_1) , then Mg 4 C Mg..
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K3-expected containments

Conversely, when d is slightly smaller, a destabilizing filtration may exist for E¢ gs.

Conjecture
For g and d sufficiently large, with d,e < g —1, and 2 < r < s,

g—d+r+1+(s—2)(r—1)—1

ife>d—2
ife> r+s+ 9 s 1

, then M! 4 C M.

Definition

?
The potential containment /\/lg’d C Mg . is called K3-expected if such a K3 surface S with

Pic(S) = A} ; admits a vector bundle E¢,gs.

Philosophy

(In some range) K3-expected containments hold.
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Other sources of (non)-containments

Containments
@ Curves on Hirzebruch surfaces [Larson—Vemulapalli]
@ Highly secant hyperplanes to curves in P"
@ Castelnuovo curves
o

Low Clifford index and Castelnuovo—Severi inequality

Non-containments

e Covers of curves (bi-elliptic curves play a large role in distinguishing loci with d — 2r = 1
and d —2r = 2)

e Chains of elliptic curves and admissible fillings of tableaux [Pflueger, Teixidor i Bigas]
@ Castelnuovo curves

@ Gonality of nodal plane curves
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Brill-Noether loci in genus 12 (omitting trivial containments 1 & \)
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Geology of Brill-Noether loci

d—2r

Few
Containments .-

??Chaos??

Layers of Equality

—
(Serre Duality)
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Thank You!

Questions?
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