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Classical Brill-Noether theory

Let C be a smooth algebraic curve.

Definition

A g}y on C'is a pair (A,V) of
@ a line bundle A € Pic?(C) with h°(C, A) > r +1, and
@ a subspace V C H°(C, A) of dimension 7 + 1.

A (basepoint free) g/, gives a map C' — P of degree d.
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Classical Brill-Noether theory

Let C be a smooth algebraic curve.

Definition

A g}y on C'is a pair (A,V) of
@ a line bundle A € Pic?(C) with h°(C, A) > r +1, and
@ a subspace V C H°(C, A) of dimension 7 + 1.

A (basepoint free) g/, gives a map C' — P of degree d.

Question
When does C' have a g};7 J
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Brill-Noether loci

Theorem (Brill-Noether theorem)
A general curve C € My admits a g}, if and only if

p(g;rd) ==g—(r+1)(g—d+r)>0

Thus when p(g,7,d) < 0, the Brill-Noether locus

My 4= {C € M, admitting a gy} is a subvariety of M.
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Brill-Noether loci

Theorem (Brill-Noether theorem)
A general curve C € My admits a g}, if and only if

p(g;rd) ==g—(r+1)(g—d+r)>0

Thus when p(g,7,d) < 0, the Brill-Noether locus
My 4= {C € M, admitting a gy} is a subvariety of M.
Recall, the gonality of a curve is gon(C) := min{k | C' admits a g} }.

Gonality stratification

A general curve in M; . has gonality &, and we have a stratification

1 1 1 1 _
MyoC Mg C--- C ngLgTHJ C Mg,LgQﬁJ =M,
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Properties of Brill-Noether loci M ,

@ Can have multiple components of varying dimensions

R. Haburcak (MPIM & Dartmouth) Max BN loci via gonality JMM 2024



Properties of Brill-Noether loci M ,

@ Can have multiple components of varying dimensions

@ Each component has codimension at most —p(g, 7, d), the expected
codimension

R. Haburcak (MPIM & Dartmouth) Max BN loci via gonality JMM 2024



Properties of Brill-Noether loci M ,

@ Can have multiple components of varying dimensions

@ Each component has codimension at most —p(g, 7, d), the expected
codimension

o codim My ;, = —p(g,7,d) for =3 < p(g,r,d) < —1
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Properties of Brill-Noether loci M ,

Can have multiple components of varying dimensions

Each component has codimension at most —p(g, r, d), the expected
codimension

codim My ; = —p(g,r,d) for =3 < p(g,7,d) < -1
Irreducible for p = —1 and distinct for p = —1, -2
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Properties of Brill-Noether loci M ,

@ Can have multiple components of varying dimensions

@ Each component has codimension at most —p(g, 7, d), the expected
codimension

o codim My ;, = —p(g,7,d) for =3 < p(g,r,d) < —1
@ Irreducible for p = —1 and distinct for p = —1, -2

@ When p(g,r,d) is not too negative (p > —g + 3), have a component
of expected codimension
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Properties of Brill-Noether loci M ,

@ Can have multiple components of varying dimensions

@ Each component has codimension at most —p(g, 7, d), the expected
codimension

o codim My ;, = —p(g,7,d) for =3 < p(g,r,d) < —1
@ Irreducible for p = —1 and distinct for p = —1, -2

@ When p(g,r,d) is not too negative (p > —g + 3), have a component
of expected codimension

Mgl],k is an irreducible subvariety of codimension —p(g, 1, k)
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Refined Brill-Noether theory

Question
What linear systems does a “general” curve C' € My ; admit?
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Refined Brill-Noether theory

Question

What linear systems does a “general” curve C' € My ; admit?

Theorem (Pflueger, Jensen—Ranganathan)

A general curve C of gonality k admits a g, if and only if

< = . — .
0 < pr(g, 7, d) Oggminrg?g{d+r_l}p(g,r t,d) -tk
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Refined Brill-Noether theory

Question

What linear systems does a “general” curve C' € MT 4 admit?

Theorem (Pflueger, Jensen—Ranganathan)
A general curve C of gonality k admits a g, if and only if

< = _ — k.
ve Pk (g7 " d) 0<€<m1nrg‘?gx d+r—1} ,O(g, " g’ d> 2

Considering “general" C € MG, 4. refined Brill=Noether theory can be
rephrased in terms of (non- )contamments of Brill-Noether loci.

Question
What are the maximal Brill-Noether loci? J
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Maximal Brill-Noether loci

We have trivial containments
o My, C My .1 by adding a basepoint
o Mj,C ./\/lgd | by subtracting a non-basepoint
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Maximal Brill-Noether loci

We have trivial containments
o My ; C My 4y by adding a basepoint

o Mj,C M;,idlq by subtracting a non-basepoint

Definition

My ; is expected maximal if d < g — 1 (up to Serre duality) and
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Maximal Brill-Noether loci

We have trivial containments

o My ; C My 4y by adding a basepoint

o Mj,C Mgfdl,l by subtracting a non-basepoint
Definition

My ; is expected maximal if d < g — 1 (up to Serre duality) and
° p(g,r,d) <0,
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Maximal Brill-Noether loci

We have trivial containments
o My ; C My 4y by adding a basepoint

o Mj,C M;,idlq by subtracting a non-basepoint

Definition

My ; is expected maximal if d < g — 1 (up to Serre duality) and
e p(g,r,d) <0,
e p(g,r,d+1) >0, and
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Maximal Brill-Noether loci

We have trivial containments
o My ; C My 4y by adding a basepoint

o Mj,C M;,idlq by subtracting a non-basepoint

Definition

My ; is expected maximal if d < g — 1 (up to Serre duality) and
e p(g,r,d) <0,
e p(g,r,d+1) >0, and
e p(g,r—1,d—1) > 0.
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Maximal Brill-Noether loci

We have trivial containments
o My ; C My 4y by adding a basepoint
o Mj,C Mgfdl,l by subtracting a non-basepoint

Definition

My ; is expected maximal if d < g — 1 (up to Serre duality) and
e p(g,r,d) <0,
e p(g,r,d+1) >0, and
e p(g,r—1,d—1) > 0.

Foreach 1 <r < |[/g— %j there is one expected maximal Brill-Noether
locus with d = dpaz(g,7) =7+ [[45] — 1.

H T o.__ T
We write Mg T gad'maz(gvr)-
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Maximal Brill-Noether loci

Conjecture (Auel-H.)

For g > 3, except g = 7,8,9, the expected maximal Brill-Noether loci are
maximal.

That is, for every pair of expected maximal loci there is some curve

C € Mg but C ¢ M.
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Maximal Brill-Noether loci

Conjecture (Auel-H.)

For g > 3, except g = 7,8,9, the expected maximal Brill-Noether loci are
maximal.

In genus 7, 8,9, there are non-trivial containments:
M%,G - M%A: Mél%A C M%g, M%; C Méﬁ. [Larson, Mukai]
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Maximal Brill-Noether loci

Conjecture (Auel-H.)

For g > 3, except g = 7,8,9, the expected maximal Brill-Noether loci are
maximal.

In genus 7, 8,9, there are non-trivial containments:
M%,G - M%A: Mél%A C M%g, M%; C Méﬁ. [Larson, Mukai]

The conjecture holds in many cases:
e g <20, 22, 23 [Farkas, Lelli-Chiesa, Auel-H., Auel-H.—Larson]
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Maximal Brill-Noether loci

Conjecture (Auel-H.)

For g > 3, except g = 7,8,9, the expected maximal Brill-Noether loci are
maximal.

In genus 7, 8,9, there are non-trivial containments:
MGs C My, My, C Mgy MG, C Mgs. [Larson, Mukai]
The conjecture holds in many cases:

e g <20, 22, 23 [Farkas, Lelli-Chiesa, Auel-H., Auel-H.—Larson]

e g+lorg+2e{lem(l,...,n)|n >4} (all expected maximal BN
loci have same p € {—1, —2}) [Eisenbud—Harris, Choi-Kim—Kim]
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Maximal Brill-Noether loci

Conjecture (Auel-H.)

For g > 3, except g = 7,8,9, the expected maximal Brill-Noether loci are
maximal.

In genus 7, 8,9, there are non-trivial containments:
M%,G - M%A: Mé74 C M%g, MSJ C Méﬁ. [Larson, Mukai]

The conjecture holds in many cases:
e g <20, 22, 23 [Farkas, Lelli-Chiesa, Auel-H., Auel-H.—Larson]

e g+lorg+2e{lem(l,...,n)|n >4} (all expected maximal BN
loci have same p € {—1, —2}) [Eisenbud—Harris, Choi-Kim—Kim]

Many other non-containments of BN loci are known [Lelli-Chiesa, Teixidor
i Bigas, Auel-H.—Larson]
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Distinguishing BN loci via gonality stratification

Definition

k(g,r,d) == max{k | Mg C Mg}
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Distinguishing BN loci via gonality stratification

Definition

k(g,r,d) == max{k | Mg C Mg}

2 < k(g,r,d): hyperelliptic curves have all g/js (via trivial containments).

k(g,r,d) < L%J: Mjm% = M,.

]
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Distinguishing BN loci via gonality stratification

Definition

k(g,r,d) == max{k | Mg C Mg}

2 < k(g,r,d): hyperelliptic curves have all g/js (via trivial containments).

k(g,r,d) < L%j: M;LMJ = M,.

k(8,2,7) =4

Mg, C M3 (genus 8 counterexample) and Mg 5 = Mg so
1 2
Mgs € Mg
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Proposition
Suppose r(g,r,d) > (g, s, €), then My , ¢ M: ..

k(g,r,d)=k > Kk(g,s,e) =k —1

T s
Mgvd Mg,e

[ )

1 1 1 )
\My,k—l C Mg C “Mf/-A‘Jrl/

A general curve of gonality % is contained in My ,, but not in Mg ..
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k(g,r, d)

By the refined Brill-Noether theory for curves of fixed gonality,

k(g,r,d) = max{k | pr(g,r,d) > 0}.
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k(g,r,d)

By the refined Brill-Noether theory for curves of fixed gonality,

k(g,r,d) = max{k | pr(g,r,d) > 0}.

d) = d —k—d+2r+ 1) -2,
prlgymd) = max o elend)+(g +2r+1)

which ranges over upside down parabolas.
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k(g,r,d)

By the refined Brill-Noether theory for curves of fixed gonality,

k(g,r,d) = max{k | pr(g,r,d) > 0}.

_ . P2
pr(g,7,d) —Ogggmin%?g{d+r_l}p(g,r, d)+(g—k—d+2r+1){ -,

which ranges over upside down parabolas.

Theorem (Auel-H.—Larson)
Letd < g—1, then

|d/r| ifg+1>d+ |d/r]
g+1—d+2r+|—-2/—p(g,r,d)| else.

Moreover, for expected maximal loci with r > 2, we always have
K (M;) =g+1—dmal(gr)+2r+[-2y/—p].

k(g,r,d) = {
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Simple proofs of non-containments of Brill-Noether loci

Theorem (Auel-H.)
For g # 8, M; is maximal.

Compute k(M}) > k(M}), hence My & M.
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Simple proofs of non-containments of Brill-Noether loci

Theorem (Auel-H.)
For g # 8, M; is maximal.

Compute k(M}) > k(M}), hence My & M.
We obtain a new proof that Brill-Noether loci with p = —1 are distinct.

Theorem (Auel-H.—Larson)

For two expected maximal BN loci, if p(g,r,d) = p(g, s,e) then we have
M, & M; or the other non-containment.

p and d — 2r identify Brill-Noether loci up to Serre duality. Now use
£ (Mp) = g+ 1= dias(g,7) + 21 + [~20/=5)].
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Bounds on «(g,r,d)

35
P g 160 4 P g .
aitr it
30 r 1404 K
— -2y +1 — Ar-2vr+1
1204
25
1004
20 804
604
15
101
2 3 4 5 6 7 8 9 2
T T
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Non-containments of Brill-Noether loci

Theorem (Auel-H.—Larson)

Fixr>2. Ifg>4(r+1)%2 4+ (r + 1)2 + 2(r + 1)%/2, then
K(M)) > k(M) for all s > r. In particular, M[, & M.
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Non-containments of Brill-Noether loci

Theorem (Auel-H.—Larson)

Fixr>2. Ifg>4(r+1)%2 4+ (r + 1)2 + 2(r + 1)%/2, then
K(M)) > k(M) for all s > r. In particular, M[, & M.

For each r, there exists a smallest G(r) such that K(M7) > k(Mp):

r 2 13| 4 5 6 7 8 9 10
G(r) || 28 | 50 | 96 | 140 | 232 | 306 | 390 | 561 | 634
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Non-containments of Brill-Noether loci

Theorem (Auel-H.—Larson)

Fixr>2. Ifg>4(r+1)%2 4+ (r + 1)2 + 2(r + 1)%/2, then
K(M)) > k(M) for all s > r. In particular, M[, & M.

For each r, there exists a smallest G(r) such that K(M7) > k(Mp):

r 2 13| 4 5 6 7 8 9 10
G(r) || 28 | 50 | 96 | 140 | 232 | 306 | 390 | 561 | 634

Fixing r, to prove that Mg is always maximal, it remains to check
M & M for ¢ < r, and all non-containments for g < G(r).
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Non-containments of Brill-Noether loci

Corollary (Auel-H.—Larson)

Except for g = 7,9, and possibly g = 24,27, the expected maximal
Brill-Noether locus M is maximal.

To show M2 & M, we use K3 surfaces to exhibit a curve with a
gﬁmaz(g 2) and generic gonality.
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Non-containments of Brill-Noether loci

Corollary (Auel-H.—Larson)

Except for g = 7,9, and possibly g = 24,27, the expected maximal
Brill-Noether locus M is maximal.

To show Mg g M., we use K3 surfaces to exhibit a curve with a
g?lmaz(g 2) and generic gonality.

Proposition (Auel-H.-Larson)

For any g > 14, Mj, ¢ /\/l; for all expected maximal Brill-Noether loci
with r > 2.
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Thank You!

Questions?
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