Maximal Brill–Noether loci via the gonality stratification

Richard Haburcak Joint with Asher Auel and Hannah Larson

Max Planck Institute for Mathematics Bonn Dartmouth College

Joint Mathematics Meetings January 6th, 2024

Classical Brill-Noether theory

Let ${\cal C}$ be a smooth algebraic curve.

Definition

A g_d^r on C is a pair (A,V) of

- a line bundle $A \in \operatorname{Pic}^d(C)$ with $h^0(C,A) \geq r+1$, and
- a subspace $V \subseteq H^0(C,A)$ of dimension r+1.

A (basepoint free) g_d^r gives a map $C \to \mathbb{P}^r$ of degree d.

Question

When does C have a g_d^r ?

Classical Brill-Noether theory

Let C be a smooth algebraic curve.

Definition

A g^r_d on C is a pair (A,V) of

- a line bundle $A \in \operatorname{Pic}^d(C)$ with $h^0(C,A) \geq r+1$, and
- a subspace $V \subseteq H^0(C,A)$ of dimension r+1.

A (basepoint free) g_d^r gives a map $C \to \mathbb{P}^r$ of degree d.

Question

When does C have a g_d^r ?

Brill-Noether loci

Theorem (Brill-Noether theorem)

A general curve $C \in \mathcal{M}_g$ admits a g^r_d if and only if

$$\rho(g, r, d) := g - (r+1)(g - d + r) \ge 0$$

Thus when $\rho(g, r, d) < 0$, the Brill–Noether locus

$$\mathcal{M}_{g,d}^r \coloneqq \{C \in \mathcal{M}_g \text{ admitting a } g_d^r\}$$
 is a subvariety of \mathcal{M}_g .

Recall, the *gonality* of a curve is $gon(C) := min\{k \mid C \text{ admits a } g_k^1\}.$

Gonality stratification

A general curve in $\mathcal{M}_{g,k}^1$ has gonality k, and we have a stratification

$$\mathcal{M}_{g,2}^1 \subset \mathcal{M}_{g,3}^1 \subset \dots \subset \mathcal{M}_{g,\lfloor \frac{g+1}{2} \rfloor}^1 \subset \mathcal{M}_{g,\lfloor \frac{g+3}{2} \rfloor}^1 = \mathcal{M}_g$$

Brill-Noether loci

Theorem (Brill-Noether theorem)

A general curve $C \in \mathcal{M}_g$ admits a g^r_d if and only if

$$\rho(g, r, d) := g - (r+1)(g - d + r) \ge 0$$

Thus when $\rho(g, r, d) < 0$, the Brill–Noether locus

$$\mathcal{M}_{g,d}^r \coloneqq \{C \in \mathcal{M}_g \text{ admitting a } g_d^r\}$$
 is a subvariety of \mathcal{M}_g .

Recall, the gonality of a curve is $gon(C) := min\{k \mid C \text{ admits a } g_k^1\}.$

Gonality stratification

A general curve in $\mathcal{M}_{g,k}^1$ has gonality k, and we have a stratification

$$\mathcal{M}_{g,2}^1 \subset \mathcal{M}_{g,3}^1 \subset \cdots \subset \mathcal{M}_{g,\lfloor \frac{g+1}{2} \rfloor}^1 \subset \mathcal{M}_{g,\lfloor \frac{g+3}{2} \rfloor}^1 = \mathcal{M}_g$$

• Can have multiple components of varying dimensions

- Each component has codimension at most $-\rho(g,r,d)$, the expected codimension
- $\operatorname{codim} \mathcal{M}_{q,d}^r = -\rho(g,r,d)$ for $-3 \le \rho(g,r,d) \le -1$
- Irreducible for $\rho = -1$ and distinct for $\rho = -1, -2$
- When $\rho(g,r,d)$ is not too negative $(\rho \geq -g+3)$, have a component of expected codimension
- \bullet $\mathcal{M}_{g,k}^1$ is an irreducible subvariety of codimension $-\rho(g,1,k)$

- Can have multiple components of varying dimensions
- Each component has codimension at most $-\rho(g,r,d)$, the expected codimension
- $\operatorname{codim} \mathcal{M}_{q,d}^r = -\rho(g,r,d)$ for $-3 \le \rho(g,r,d) \le -1$
- Irreducible for $\rho=-1$ and distinct for $\rho=-1,-2$
- When $\rho(g,r,d)$ is not too negative $(\rho \geq -g+3)$, have a component of expected codimension
- \bullet $\mathcal{M}_{g,k}^1$ is an irreducible subvariety of codimension $-\rho(g,1,k)$

- Can have multiple components of varying dimensions
- \bullet Each component has codimension at most $-\rho(g,r,d),$ the expected codimension
- $\operatorname{codim} \mathcal{M}_{g,d}^r = -\rho(g,r,d)$ for $-3 \le \rho(g,r,d) \le -1$
- Irreducible for $\rho = -1$ and distinct for $\rho = -1, -2$
- When $\rho(g,r,d)$ is not too negative $(\rho \geq -g+3)$, have a component of expected codimension
- \bullet $\mathcal{M}_{g,k}^1$ is an irreducible subvariety of codimension $-\rho(g,1,k)$

- Can have multiple components of varying dimensions
- \bullet Each component has codimension at most $-\rho(g,r,d),$ the expected codimension
- $\operatorname{codim} \mathcal{M}_{g,d}^r = -\rho(g,r,d)$ for $-3 \le \rho(g,r,d) \le -1$
- Irreducible for $\rho=-1$ and distinct for $\rho=-1,-2$
- When $\rho(g,r,d)$ is not too negative $(\rho \geq -g+3)$, have a component of expected codimension
- $\mathcal{M}_{g,k}^1$ is an irreducible subvariety of codimension $-\rho(g,1,k)$

- Can have multiple components of varying dimensions
- Each component has codimension at most $-\rho(g,r,d)$, the expected codimension
- $\operatorname{codim} \mathcal{M}_{q,d}^r = -\rho(g,r,d)$ for $-3 \le \rho(g,r,d) \le -1$
- Irreducible for $\rho=-1$ and distinct for $\rho=-1,-2$
- When $\rho(g,r,d)$ is not too negative ($\rho \geq -g+3$), have a component of expected codimension
- ullet $\mathcal{M}_{g,k}^1$ is an irreducible subvariety of codimension $-\rho(g,1,k)$

- Can have multiple components of varying dimensions
- \bullet Each component has codimension at most $-\rho(g,r,d),$ the expected codimension
- $\operatorname{codim} \mathcal{M}_{q,d}^r = -\rho(g,r,d)$ for $-3 \le \rho(g,r,d) \le -1$
- Irreducible for $\rho=-1$ and distinct for $\rho=-1,-2$
- When $\rho(g,r,d)$ is not too negative ($\rho \geq -g+3$), have a component of expected codimension
- \bullet $\mathcal{M}^1_{g,k}$ is an irreducible subvariety of codimension $-\rho(g,1,k)$

Refined Brill-Noether theory

Question

What linear systems does a "general" curve $C \in \mathcal{M}_{a,d}^r$ admit?

Theorem (Pflueger, Jensen-Ranganathan)

A general curve C of gonality k admits a g^r_d if and only if

$$0 \le \rho_k(g, r, d) := \max_{0 \le \ell \le \min\{r, g - d + r - 1\}} \rho(g, r - \ell, d) - \ell k.$$

Considering "general" $C \in \mathcal{M}_{g,d}^r$, refined Brill–Noether theory can be rephrased in terms of (non-)containments of Brill–Noether loci.

Question

What are the maximal Brill-Noether loci?

Refined Brill-Noether theory

Question

What linear systems does a "general" curve $C \in \mathcal{M}_{q,d}^r$ admit?

Theorem (Pflueger, Jensen-Ranganathan)

A general curve C of gonality k admits a g_d^r if and only if

$$0 \le \rho_k(g, r, d) := \max_{0 \le \ell \le \min\{r, g - d + r - 1\}} \rho(g, r - \ell, d) - \ell k.$$

Considering "general" $C \in \mathcal{M}_{g,d}^r$, refined Brill–Noether theory can be rephrased in terms of (non-)containments of Brill–Noether loci.

Question

What are the maximal Brill-Noether loci?

Refined Brill-Noether theory

Question

What linear systems does a "general" curve $C \in \mathcal{M}_{q,d}^r$ admit?

Theorem (Pflueger, Jensen-Ranganathan)

A general curve C of gonality k admits a g_d^r if and only if

$$0 \le \rho_k(g, r, d) := \max_{0 \le \ell \le \min\{r, g - d + r - 1\}} \rho(g, r - \ell, d) - \ell k.$$

Considering "general" $C \in \mathcal{M}^r_{g,d}$, refined Brill–Noether theory can be rephrased in terms of (non-)containments of Brill–Noether loci.

Question

What are the maximal Brill-Noether loci?

We have trivial containments

- ullet $\mathcal{M}^r_{q,d}\subset\mathcal{M}^r_{q,d+1}$ by adding a basepoint
- ullet $\mathcal{M}^r_{q,d}\subset\mathcal{M}^{r-1}_{q,d-1}$ by subtracting a non-basepoint

Brill-Noether loci in genus 14

We have trivial containments

- ullet $\mathcal{M}^r_{q,d}\subset \mathcal{M}^r_{q,d+1}$ by adding a basepoint
- \bullet $\mathcal{M}^{r}_{g,d}\subset\mathcal{M}^{r-1}_{g,d-1}$ by subtracting a non-basepoint

Definition

 $\mathcal{M}^r_{g,d}$ is expected maximal if $d \leq g-1$ (up to Serre duality) and

- $\rho(g, r, d) < 0$,
- $\rho(g, r, d+1) \ge 0$, and
- $\rho(g, r-1, d-1) \ge 0$.

For each $1 \leq r \leq \lfloor \sqrt{g} - \frac{1}{2} \rfloor$, there is one expected maximal Brill-Noether locus with $d = d_{max}(g,r) := r + \lceil \frac{gr}{r+1} \rceil - 1$. We write $\mathcal{M}^r := \mathcal{M}^r$

We have trivial containments

- ullet $\mathcal{M}^r_{g,d}\subset\mathcal{M}^r_{g,d+1}$ by adding a basepoint
- \bullet $\mathcal{M}^{r}_{g,d}\subset\mathcal{M}^{r-1}_{g,d-1}$ by subtracting a non-basepoint

Definition

 $\mathcal{M}^r_{g,d}$ is expected maximal if $d \leq g-1$ (up to Serre duality) and

- $\rho(g, r, d) < 0$,
- $\rho(g, r, d+1) \ge 0$, and
- $\rho(g, r-1, d-1) \ge 0$.

For each $1 \leq r \leq \lfloor \sqrt{g} - \frac{1}{2} \rfloor$, there is one expected maximal Brill-Noether locus with $d = d_{max}(g,r) := r + \lceil \frac{gr}{r+1} \rceil - 1$. We write $\mathcal{M}^r := \mathcal{M}^r$.

We have trivial containments

- ullet $\mathcal{M}^r_{q,d}\subset \mathcal{M}^r_{q,d+1}$ by adding a basepoint
- \bullet $\mathcal{M}^{r}_{g,d}\subset\mathcal{M}^{r-1}_{g,d-1}$ by subtracting a non-basepoint

Definition

 $\mathcal{M}^r_{g,d}$ is expected maximal if $d \leq g-1$ (up to Serre duality) and

- $\rho(g, r, d) < 0$,
- $\rho(g, r, d+1) \ge 0$, and
- $\rho(g, r-1, d-1) \ge 0$.

For each $1 \leq r \leq \lfloor \sqrt{g} - \frac{1}{2} \rfloor$, there is one expected maximal Brill-Noether locus with $d = d_{max}(g,r) := r + \lceil \frac{gr}{r+1} \rceil - 1$. We write $\mathcal{M}^r := \mathcal{M}^r$

We have trivial containments

- ullet $\mathcal{M}^r_{q,d}\subset \mathcal{M}^r_{q,d+1}$ by adding a basepoint
- \bullet $\mathcal{M}^{r}_{g,d}\subset\mathcal{M}^{r-1}_{g,d-1}$ by subtracting a non-basepoint

Definition

 $\mathcal{M}^r_{g,d}$ is expected maximal if $d \leq g-1$ (up to Serre duality) and

- $\rho(g, r, d) < 0$,
- $\rho(g, r, d+1) \ge 0$, and
- $\rho(g, r-1, d-1) \ge 0$.

For each $1 \leq r \leq \lfloor \sqrt{g} - \frac{1}{2} \rfloor$, there is one expected maximal Brill-Noether locus with $d = d_{max}(g,r) := r + \lceil \frac{gr}{r+1} \rceil - 1$. We write $\mathcal{M}^r := \mathcal{M}^r$

We have trivial containments

- ullet $\mathcal{M}^r_{q,d}\subset \mathcal{M}^r_{q,d+1}$ by adding a basepoint
- ullet $\mathcal{M}^r_{g,d}\subset\mathcal{M}^{r-1}_{g,d-1}$ by subtracting a non-basepoint

Definition

 $\mathcal{M}^r_{g,d}$ is expected maximal if $d \leq g-1$ (up to Serre duality) and

- $\rho(g, r, d) < 0$,
- $\rho(g, r, d+1) \ge 0$, and
- $\rho(g, r-1, d-1) \ge 0$.

For each $1 \leq r \leq \lfloor \sqrt{g} - \frac{1}{2} \rfloor$, there is one expected maximal Brill-Noether locus with $d = d_{max}(g,r) := r + \lceil \frac{gr}{r+1} \rceil - 1$.

We write $\mathcal{M}_g^r \coloneqq \mathcal{M}_{g,d_{max}(g,r)}^r$.

Conjecture (Auel-H.)

For $g \ge 3$, except g = 7, 8, 9, the expected maximal Brill–Noether loci are maximal.

That is, for every pair of expected maximal loci there is some curve $C \in \mathcal{M}_g^r$ but $C \notin \mathcal{M}_g^s$.

In genus 7,8,9, there are non-trivial containments

$$\mathcal{M}^2_{7,6} \subseteq \mathcal{M}^1_{7,4}, \ \mathcal{M}^1_{8,4} \subset \mathcal{M}^2_{8,7}, \ \mathcal{M}^2_{9,7} \subset \mathcal{M}^1_{9,5}.$$
 [Larson, Mukai]

The conjecture holds in many cases:

- $g \le 20$, 22, 23 [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]
 - g+1 or $g+2 \in \{\operatorname{lcm}(1,\ldots,n) \mid n \geq 4\}$ (all expected maximal BN loci have same $\rho \in \{-1,-2\}$) [Eisenbud–Harris, Choi–Kim–Kim]

Conjecture (Auel-H.)

For $g \ge 3$, except g = 7, 8, 9, the expected maximal Brill–Noether loci are maximal.

In genus 7, 8, 9, there are non-trivial containments:

$$\mathcal{M}_{7,6}^2\subseteq\mathcal{M}_{7,4}^1,\ \mathcal{M}_{8,4}^1\subset\mathcal{M}_{8,7}^2,\ \mathcal{M}_{9,7}^2\subset\mathcal{M}_{9,5}^1.\ [\mathsf{Larson,\ Mukai}]$$

The conjecture holds in many cases

- $g \le 20, 22, 23$ [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]
- g+1 or $g+2\in\{\mathrm{lcm}(1,\ldots,n)\mid n\geq 4\}$ (all expected maximal BN loci have same $\rho\in\{-1,-2\}$) [Eisenbud–Harris, Choi–Kim–Kim]

Conjecture (Auel-H.)

For $g \ge 3$, except g = 7, 8, 9, the expected maximal Brill–Noether loci are maximal.

In genus 7, 8, 9, there are non-trivial containments:

$$\mathcal{M}_{7,6}^{\bar{2}}\subseteq\mathcal{M}_{7,4}^{1},\ \mathcal{M}_{8,4}^{1}\subset\mathcal{M}_{8,7}^{2},\ \mathcal{M}_{9,7}^{2}\subset\mathcal{M}_{9,5}^{1}.\ [\mathsf{Larson},\ \mathsf{Mukai}]$$

The conjecture holds in many cases:

- $g \le 20$, 22, 23 [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]
- g+1 or $g+2 \in \{\operatorname{lcm}(1,\ldots,n) \mid n \geq 4\}$ (all expected maximal BN loci have same $\rho \in \{-1,-2\}$) [Eisenbud–Harris, Choi–Kim–Kim]

Conjecture (Auel-H.)

For $g \ge 3$, except g = 7, 8, 9, the expected maximal Brill–Noether loci are maximal.

In genus 7, 8, 9, there are non-trivial containments:

$$\mathcal{M}_{7,6}^2\subseteq\mathcal{M}_{7,4}^1,\ \mathcal{M}_{8,4}^1\subset\mathcal{M}_{8,7}^2,\ \mathcal{M}_{9,7}^2\subset\mathcal{M}_{9,5}^1.\ [\mathsf{Larson},\,\mathsf{Mukai}]$$

The conjecture holds in many cases:

- $g \le 20$, 22, 23 [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]
- g+1 or $g+2 \in \{\operatorname{lcm}(1,\ldots,n) \mid n \geq 4\}$ (all expected maximal BN loci have same $\rho \in \{-1,-2\}$) [Eisenbud–Harris, Choi–Kim–Kim]

Conjecture (Auel-H.)

For $g \ge 3$, except g = 7, 8, 9, the expected maximal Brill–Noether loci are maximal.

In genus 7, 8, 9, there are non-trivial containments:

$$\mathcal{M}_{7,6}^2\subseteq\mathcal{M}_{7,4}^1,\ \mathcal{M}_{8,4}^1\subset\mathcal{M}_{8,7}^2,\ \mathcal{M}_{9,7}^2\subset\mathcal{M}_{9,5}^1.\ [\mathsf{Larson},\,\mathsf{Mukai}]$$

The conjecture holds in many cases:

- $g \le 20$, 22, 23 [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]
- g+1 or $g+2\in\{\mathrm{lcm}(1,\ldots,n)\mid n\geq 4\}$ (all expected maximal BN loci have same $\rho\in\{-1,-2\}$) [Eisenbud–Harris, Choi–Kim–Kim]

Distinguishing BN loci via gonality stratification

Definition

$$\kappa(g, r, d) := \max\{k \mid \mathcal{M}_{g,k}^1 \subseteq \mathcal{M}_{g,d}^r\}$$

 $2 \leq \kappa(g,r,d)$: hyperelliptic curves have all g^r_d s (via trivial containments).

$$\kappa(g, r, d) \le \lfloor \frac{g+3}{2} \rfloor \colon \mathcal{M}_{g, \lfloor \frac{g+3}{2} \rfloor}^1 = \mathcal{M}_g.$$

$$\kappa(8,2,7) = 4$$

 $\mathcal{M}^1_{8,4}\subset\mathcal{M}^2_{8,7}$ (genus 8 counterexample) and $\mathcal{M}^1_{8,5}=\mathcal{M}_8$ so $\mathcal{M}^1_{8,5}\nsubseteq\mathcal{M}^2_{8,7}$.

Distinguishing BN loci via gonality stratification

Definition

$$\kappa(g, r, d) := \max\{k \mid \mathcal{M}_{g,k}^1 \subseteq \mathcal{M}_{g,d}^r\}$$

 $2 \le \kappa(g,r,d)$: hyperelliptic curves have all g_d^r s (via trivial containments).

$$\kappa(g,r,d) \leq \lfloor \frac{g+3}{2} \rfloor : \mathcal{M}_{g,\lfloor \frac{g+3}{2} \rfloor}^1 = \mathcal{M}_g.$$

$$\kappa(8, 2, 7) = 4$$

 $\mathcal{M}^1_{8,4}\subset\mathcal{M}^2_{8,7}$ (genus 8 counterexample) and $\mathcal{M}^1_{8,5}=\mathcal{M}_8$ so $\mathcal{M}^1_{8,5}\not\subseteq\mathcal{M}^2_{8,7}$.

Distinguishing BN loci via gonality stratification

Definition

$$\kappa(g, r, d) := \max\{k \mid \mathcal{M}_{g,k}^1 \subseteq \mathcal{M}_{g,d}^r\}$$

 $2 \le \kappa(g,r,d)$: hyperelliptic curves have all g_d^r s (via trivial containments).

$$\kappa(g, r, d) \le \lfloor \frac{g+3}{2} \rfloor \colon \mathcal{M}_{g, \lfloor \frac{g+3}{2} \rfloor}^1 = \mathcal{M}_g.$$

$$\kappa(8, 2, 7) = 4$$

 $\mathcal{M}^1_{8,4}\subset\mathcal{M}^2_{8,7}$ (genus 8 counterexample) and $\mathcal{M}^1_{8,5}=\mathcal{M}_8$ so $\mathcal{M}^1_{8,5}\nsubseteq\mathcal{M}^2_{8,7}.$

Proposition

Suppose $\kappa(g,r,d) > \kappa(g,s,e)$, then $\mathcal{M}^r_{g,d} \nsubseteq \mathcal{M}^s_{g,e}$.

$$\kappa(g, r, d) = k > \kappa(g, s, e) = k - 1$$

A general curve of gonality k is contained in $\mathcal{M}_{q,d}^r$, but not in $\mathcal{M}_{g,e}^s$.

$\kappa(g,r,d)$

By the refined Brill-Noether theory for curves of fixed gonality,

$$\kappa(g, r, d) = \max\{k \mid \rho_k(g, r, d) \ge 0\}.$$

$$\rho_k(g,r,d) = \max_{0 \leq \ell \leq \min\{r,g-d+r-1\}} \rho(g,r,d) + (g-k-d+2r+1)\ell - \ell^2,$$
 which ranges over upside down parabolas.

Theorem (Auel-H.-Larson)

Let $d \leq g - 1$, then

$$\kappa(g,r,d) = \begin{cases} \lfloor d/r \rfloor & \text{if } g+1 > d + \lfloor d/r \rfloor \\ g+1-d+2r + \lfloor -2\sqrt{-\rho(g,r,d)} \rfloor & \text{else.} \end{cases}$$

Moreover, for expected maximal loci with $r \geq 2$, we always have $\kappa\left(\mathcal{M}_g^r\right) = g + 1 - d_{max}(g,r) + 2r + \lfloor -2\sqrt{-\rho}\rfloor$.

$\kappa(g, r, d)$

By the refined Brill-Noether theory for curves of fixed gonality,

$$\kappa(g, r, d) = \max\{k \mid \rho_k(g, r, d) \ge 0\}.$$

$$\rho_k(g,r,d) = \max_{0 \leq \ell \leq \min\{r,g-d+r-1\}} \rho(g,r,d) + (g-k-d+2r+1)\ell - \ell^2,$$
 which ranges over upside down parabolas.

Theorem (Auel-H.-Larson)

Let $d \leq g - 1$, then

$$\kappa(g,r,d) = \begin{cases} \lfloor d/r \rfloor & \text{if } g+1 > d + \lfloor d/r \rfloor \\ g+1-d+2r + \lfloor -2\sqrt{-\rho(g,r,d)} \rfloor & \text{else.} \end{cases}$$

Moreover, for expected maximal loci with $r \geq 2$, we always have $\kappa\left(\mathcal{M}_{q}^{r}\right) = g + 1 - d_{max}(g,r) + 2r + \lfloor -2\sqrt{-\rho} \rfloor$.

$\kappa(g, r, d)$

By the refined Brill-Noether theory for curves of fixed gonality,

$$\kappa(g,r,d) = \max\{k \mid \rho_k(g,r,d) \ge 0\}.$$

$$\rho_k(g,r,d) = \max_{0 \leq \ell \leq \min\{r,g-d+r-1\}} \rho(g,r,d) + (g-k-d+2r+1)\ell - \ell^2,$$
 which ranges over upside down parabolas.

Theorem (Auel-H.-Larson)

Let $d \leq g - 1$, then

$$\kappa(g,r,d) = \begin{cases} \lfloor d/r \rfloor & \text{if } g+1 > d + \lfloor d/r \rfloor \\ g+1-d+2r + \lfloor -2\sqrt{-\rho(g,r,d)} \rfloor & \text{else.} \end{cases}$$

Moreover, for expected maximal loci with $r \geq 2$, we always have $\kappa\left(\mathcal{M}_g^r\right) = g + 1 - d_{max}(g,r) + 2r + \lfloor -2\sqrt{-\rho} \rfloor$.

Simple proofs of non-containments of Brill-Noether loci

Theorem (Auel-H.)

For $g \neq 8$, \mathcal{M}_g^1 is maximal.

Compute
$$\kappa(\mathcal{M}_g^1) > \kappa(\mathcal{M}_g^r)$$
, hence $\mathcal{M}_g^1 \nsubseteq \mathcal{M}_g^r$.

We obtain a new proof that Brill–Noether loci with ho=-1 are distinct.

Theorem (Auel-H.-Larson)

For two expected maximal BN loci, if $\rho(g,r,d)=\rho(g,s,e)$ then we have $\mathcal{M}_g^r\nsubseteq\mathcal{M}_g^s$ or the other non-containment.

 ρ and d-2r identify Brill–Noether loci up to Serre duality. Now use $\kappa\left(\mathcal{M}_g^r\right)=g+1-d_{max}(g,r)+2r+\lfloor -2\sqrt{-\rho}\rfloor.$

Simple proofs of non-containments of Brill-Noether loci

Theorem (Auel-H.)

For $g \neq 8$, \mathcal{M}_g^1 is maximal.

Compute $\kappa(\mathcal{M}_g^1) > \kappa(\mathcal{M}_g^r)$, hence $\mathcal{M}_g^1 \nsubseteq \mathcal{M}_g^r$.

We obtain a new proof that Brill–Noether loci with $\rho=-1$ are distinct.

Theorem (Auel-H.-Larson)

For two expected maximal BN loci, if $\rho(g,r,d)=\rho(g,s,e)$ then we have $\mathcal{M}_g^r \nsubseteq \mathcal{M}_g^s$ or the other non-containment.

 ρ and d-2r identify Brill–Noether loci up to Serre duality. Now use $\kappa\left(\mathcal{M}_g^r\right)=g+1-d_{max}(g,r)+2r+\lfloor -2\sqrt{-\rho}\rfloor.$

Bounds on $\kappa(g, r, d)$

Theorem (Auel-H.-Larson)

Fix
$$r \geq 2$$
. If $g \geq 4(r+1)^{5/2} + (r+1)^2 + 2(r+1)^{3/2}$, then $\kappa(\mathcal{M}_g^r) > \kappa(\mathcal{M}_g^s)$ for all $s > r$. In particular, $\mathcal{M}_g^r \nsubseteq \mathcal{M}_g^s$.

For each r, there exists a smallest G(r) such that $\kappa(\mathcal{M}_g^r) > \kappa(\mathcal{M}_g^s)$:

G(r)	28	50	140	232		561	684

Fixing r, to prove that \mathcal{M}_g^r is always maximal, it remains to check $\mathcal{M}_q^r \nsubseteq \mathcal{M}_q^q$ for q < r, and all non-containments for g < G(r).

Theorem (Auel-H.-Larson)

Fix
$$r \geq 2$$
. If $g \geq 4(r+1)^{5/2} + (r+1)^2 + 2(r+1)^{3/2}$, then $\kappa(\mathcal{M}_g^r) > \kappa(\mathcal{M}_g^s)$ for all $s > r$. In particular, $\mathcal{M}_g^r \nsubseteq \mathcal{M}_g^s$.

For each r, there exists a smallest G(r) such that $\kappa(\mathcal{M}_g^r) > \kappa(\mathcal{M}_g^s)$:

r	2	3	4	5	6	7	8	9	10
G(r)	28	50	96	140	232	306	390	561	684

Fixing r, to prove that \mathcal{M}_g^r is always maximal, it remains to check $\mathcal{M}_q^r \nsubseteq \mathcal{M}_q^q$ for q < r, and all non-containments for g < G(r).

Theorem (Auel-H.-Larson)

Fix
$$r \geq 2$$
. If $g \geq 4(r+1)^{5/2} + (r+1)^2 + 2(r+1)^{3/2}$, then $\kappa(\mathcal{M}_g^r) > \kappa(\mathcal{M}_g^s)$ for all $s > r$. In particular, $\mathcal{M}_g^r \nsubseteq \mathcal{M}_g^s$.

For each r, there exists a smallest G(r) such that $\kappa(\mathcal{M}_g^r) > \kappa(\mathcal{M}_g^s)$:

r	2	3	4	5	6	7	8	9	10
G(r)	28	50	96	140	232	306	390	561	684

Fixing r, to prove that \mathcal{M}_g^r is always maximal, it remains to check $\mathcal{M}_g^r \nsubseteq \mathcal{M}_g^q$ for q < r, and all non-containments for g < G(r).

Corollary (Auel-H.-Larson)

Except for g=7,9, and possibly g=24,27, the expected maximal Brill–Noether locus \mathcal{M}_q^2 is maximal.

To show $\mathcal{M}_g^2 \nsubseteq \mathcal{M}_g^1$, we use K3 surfaces to exhibit a curve with a $g_{d_{max}(g,2)}^2$ and generic gonality.

Proposition (Auel-H.-Larson)

For any $g \geq 14$, $\mathcal{M}_g^r \nsubseteq \mathcal{M}_g^1$ for all expected maximal Brill–Noether loci with $r \geq 2$.

Corollary (Auel-H.-Larson)

Except for g=7,9, and possibly g=24,27, the expected maximal Brill–Noether locus \mathcal{M}_q^2 is maximal.

To show $\mathcal{M}_g^2 \nsubseteq \mathcal{M}_g^1$, we use K3 surfaces to exhibit a curve with a $g_{d_{max}(g,2)}^2$ and generic gonality.

Proposition (Auel-H.-Larson)

For any $g \geq 14$, $\mathcal{M}_g^r \nsubseteq \mathcal{M}_g^1$ for all expected maximal Brill–Noether loci with $r \geq 2$.

Thank You!

Questions?